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ANALYTICAL AND NUMERICAL INVESTIGATION OF THE THREE- 

DIMENSIONAL VISCOUS SHOCK-LAYER ON BLUNT SOLIDS 

I. G. Brykina, V. V. Rusakov, and V. G. Shcherbak UDC 533.6.011 

Three-dimensional problems of viscous flow around bodies are presently among the most 
pressing problems of hypersonic aerodynamics in connection with the development of craft 
which move in the upper atmospheric layers. The use of numerical methods in solving such 
problems requires great amounts of computer time and internal computer memory. Therefore, 
development of approximate methods which, while being sufficiently accurate, can be used 
in engineering practice, is very timely. Many approximate methods have been developed for 
large Reynolds numbers Re. They are based on the boundary layer theory and require know- 
ledge of the parameters of nonviscous flow at the surface of the solid. However, there are 
presently no similar methods suitable for solving three-dimensional problems of viscous flow 
around solids at small and medium Reynolds numbers (Re ~ 103), where the viscosity is con- 
siderable throughout the entire region of perturbed flow and the classical boundary layer 
theory is inapplicable. 

On the basis of an approximate solution of the equations of a three-dimensional hyper- 
sonic viscous shock-layer, we have obtained an analytical solution for determining the ther- 
mal flux and the friction stress at the lateral surface of blunt solids for small and medium 
Re numbers with an allowance for the slippage effect and the temperature jump at the surface. 
For a flow characterized by medium or large Re values, a simple expression has been derived 
for the thermal flux distribution over the surface; the thermal flux is reduced to its value 
at the stagnation point. This expression depends only on the geometry of the body in the 
flow. The present article is a continuation of [i], where a similar problem was solved in 
the neighborhood of the symmetry plane. 

i. Consider the steady-state, three-dimensional hypersonic flow of a viscous gas 
around a smooth, blunt solid at small and medium Re numbers. The flowis investigated by 
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using the model of a thin, viscous shock-layer, similar to the two-layer model proposed in 
[2] for axisy~etric flow around a solid and generalized in [3] to encompass the case of 
three-dimensional flow. 

Assume that the surface of the streamlined solid is assigned in a Cartesian coordinate 
system by the equation z = f(x, y), the velocity vector of the oncoming flower= has the di- 
rection of the z axis, the coordinate origin is located at the stagnation point of the flow, 
and x and y axes lie in the principal curvature planes of the surface at this point. We 
choose a system of curvilinear nonorthogonal coordinates {xi}, bound to the streamlined sur- 
face: x s is the distance along the normal to the surface, while the Cartesian coordinates 
of the point of intersection between this normal and the surface x ~ = x, x = = y, z = f(x ~, 
x =) are used as the other two coordinates at the surface. 

The equations of the three-dimensional, thin viscous shock-layer in the {x i} coordinate 
system are given by 

Ox--- ~ pu  ~ + Ox--- i 

,; = i ,  2, 

p A ~ u ~  u~ = - a_ZP 
a S  (1. i) 

~u a OH* + 9U 3 _ _  '__u__ _ _  ox \ vg(aa)g(~ft)  

H *  ga~ P = S T ,  = T + V g ( o : ~ ) g ( ~  U~ ~ = T ~  

2 
? -- t P~ov~ R voo 

= - ~ - ,  ~e , (r0), To =~-~%, 

2 '2 , , " c)f 

Ox ~ 

Here and below, summation with respect to the subscripts within round brackets is not per- 
formed, while the Greek subscripts assume the values i, 2; p=p is the density, p~v~2p is the 
pressure, BD(TQ) is the viscosity coefficient, H'v=2/2 is the total enthalpy, TT 0 is the 
temperature, ulv~ (i = i, 2, 3) are the components of the velocity vector, R is the charac- 
teristic dimension of the solid, represented by one of the principal curvature radii at the 
stagnation point, Pr is the Prandtl number, and y is the ratio of the specific heat charac- 
teristics; the subscript ~ denotes the values of the quantities in the unperturbed flow. 
The coefficient A~T are certain functions of the metric tensor g~ given in [~]. 

The boundary conditions accounting for the slipping rate and the temperature jump are 
assigned at the solid's surface: 

u ~ = 2 - - 0 1 /  y~ ~ ~u~ U 3 ~ 0 ,  
----o-- F y - -  t p R e ] / T  0x s ' 

( 1 . 2 )  
H *  

The generalized Rankine-Hugoniot conditions are used at the inside boundary of the 
shock-wave: 

3 
- 

~OooZ)co 

Uoo - -  Re Pr Ox s ~ /g (aa )g (~ )  j '  

(1.3) 
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where O is the coefficient of diffusion reflection, and ~ is the accommodation coefficient 
(the 8 = 1 and a = 1 values were used in calculations); the w and s subscripts correspond 
to the parameter values at the solid's surface and the inside boundary of the shock-wave. 

The components of the friction stress and the thermal flux are calculated by means of 
the expressions (the primes denote dimensional quantities) 

a (,P'u~') 
q, = ~, OT' + it, g ~  

ax3---' -2 Vg(aa)g([tB;" OxS' 

The S t a n t o n  number  and  t h e  f r i c t i o n  c o e f f i c i e n t  a r e  d e t e r m i n e d  a s  f o l l o w s :  

c . - - - - - q ' / [ p , v . ( H * - -  H * ) ] ,  c ~ =  x a ' / ( p , v ~ ) .  

2.  The s y s t e m  o f  e q u a t i o n s  ( 1 . 1 )  h a s  a s i n g u l a r i t y  a t  t h e  c r i t i c a l  p o i n t .  
t o  r e s o l v e  t h i s  s i n g u l a r i t y ,  w~_2_ass t o  new d e p e n d e n t  v a r i a b l e s ,  u s = u ~ a u ,  ~. 
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We shall solve the equations of a three-dimensional, viscous shock-layer, written in 
terms of the new variables, by using the integral method of successive approximations, which 
was first proposed in [5] for solving two-dimensional boundary-layer equations. A similar 
method was then developed in [6] for solving two-dimensional problems of a hypersonic vis- 
cous shock-layer. The equations of momentum and energy are integrated twice with respect to 

the transverse coordinate while using boundary conditions (1.2) and (1.3). In order to solve 
the resulting system of integrodifferential equations, we devised an iteration process where 
each subsequent approximation of the functions to be determined is expressed in terms of in- 
tegrals of the preceding approximation. In order to ensure that all approximations satisfy 
the boundary conditions at both the solid and the shock-wave, we introduce at each step of 
the iteration process additional control functions A~(x l, x 2) and AH(x z, x2), for which par- 
tial differential equations are obtained. They generally do not have an analytical solution 
and are, therefore, solved here by using a locally self-similar approximation. 

We assign the initial approximation for the components of the velocity vector u, a and 
the reduced total enthalpy G = (H* - Hw*)/(H~* - H w ) in the form of linear functions with 
respect to the transverse coordinate u, ~ = a(~ + b) and G = c(~ + d), where a, b, c, and d 
depend on x I and x 2 and are determined from the boundary conditions at the solid and at the 
shock-wave. Then, in the first approximation of this method, we obtain the analytical solu- 
tion for the pressure, the velocity components, the friction coefficient, and the Stanton 
number: 

, = 

g~,a 1 
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(2.1) 

(2.2) 

(2.3) 

(2.4) 

The quantities a, b, c, d, a 0, a z, A H, Aa, R a, T z, T 2, and F ~ are certain functions of 
the coordinates and the gas-dynamics parameters of the problem and are determined by means 
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of the expressions given in [i], in which the following changes connected with the three- 
dimensionality of the problem must be introduced: 

' ~ ' ~  I . . . . .  ( t  i f - - j ;  3) + ~ + 
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Here, H is the mean curvature of the surface, equal to the half-sum of the principal curva- 
tures at the point under consideration. 

Calculations based on the above expressions and also the numerical solution of the sys- 
tem of equations (i.i) have shown that, for Re ~ I00, the slippage conditions at the solid 
and at the shock-wave hardly affect the solution of the problem. If we apply the usual 
Rankine-Hugoniot conditions and the sticking conditions at the solid, then a = c = 1 and 
b = d = 0, which considerably simplifies the above expressions. 

For instance, we obtain the following expression for the Stanton number: 

c~ ( 2 . 5 )  
cB = 6 ( R e P r e ) l / 3 (  t _ Tw)~I4(2/2 7 @ (t/7) Tw)l/2, 

where a is the angle between the vector of the normal to the surface and the vector of the 
oncoming flow velocity. In our coordinate system, cos a = i/~g. 

The surface distribution of the thermal flux, reduced to its value at the critical 
point, q/q0 = CH/CH0 (the subscript 0 pertains to the corresponding quantities at the stag- 
nation point), is found by means of the expression 

q/qo = c~ a 1/r H / H o ,  ( 2 . 6 )  

which is a generalization of the relationships obtained in [i] for the distribution q/qr 
along the spreading line to the case of the side surface. It follows from (2.6) that, for 
Re ~ i00, the relative thermal flux at the side surface no longer depends on Re (for small 
Re values, this dependence is considerable), while it also is independent of y, Pr, and T w 
(for a cooled wall, T w ~ 0.5) and is determined only by the geometric characteristics of the 
streamlined solid. This is also supported by the results of our numerical calculations. 

3. The accuracy of the expressions derived was estimated by comparing them with the 
numerical solution of the system of equations (i.I) for boundary conditions (1.2) and (1.3)~ 
We used the methods [7] of the fourth order of approximation accuracy with respect to the 
transverse coordinates and of the second order of accuracy with respect to the longitudinal 
coordinates. The longitudinal components of the pressure gradient were assigned here by us- 
ing Newton's formula. In order to match the numerical and the analytical solutions, the 
latter was modified so that p2 a was determined according to Newton's formula. In performing 
calculations based on (2.1)-(2.4), it was assumed that k2a = 0. 

The calculation results obtained by means of (2.1)-(2.6) were compared with the exact 
numerical solutions for different elliptical paraboloids, parted hyperboloids, and triaxial 
ellipsoids, positioned at a zero angle of attack in the flow. The comparison was carried 
out in a wide range of gas-dynamics parameters pertinent to the problem: Re = 1-104 , T w = 
0.01-0.5, and y = 1.1-1.67. This comparison between the analytical and the numerical solu- 
tions has shown that expressions (2.3)-(2.5) ensure satisfactory accuracy at small Reynolds 
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numbers of the absolute values of the friction and heat exchange coefficients at the surface 
both with and without an allowance for the slippage effect. Thus, for Re ~ 102 , the error 
did not exceed 10%. The accuracy of the expressions for the absolute values of c H and cf ~ 
diminishes with an increase in Re. Thus, for Re = 103 , the error may reach -20%, while, for 
Re = 10 ~, it can even reach 30%. This is connected with the fact that, in using the method 
of successive approximations, linear profiles of the velocity and enthalpy components were 
assigned as the zero approximation, which, for large Re values, no longer corresponded to 
the behavior of these profiles, even in terms of Dorodnitsyn's variables. However, for 
these values of Re, we can use the expressions proposed in the boundary layer theory (for 
instance, [8, 9]). 

At the same time, the relative values of the thermal flux and friction stress can be 
determined with satisfactory accuracy by means of the above expressions throughout the en- 
tire range of Re values, from the small to the large ones. 

Figures 1 and 2 show the distributions of c H and of the friction coefficient cf 2 over 
the surface of an elliptic paraboloid characterized by the ratio of the principal curvature 
at the critical point k = 0.4 (the results for cf I are similar) for Re = i, 7 = 1.4, T w = 
0.1, and Pr = 0.71. The solid curves represent the results of calculations of the system of 
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equations (i.I) without an allowance for the slippage effect, the dashed curves pertain to 
the results for boundary conditions (1.2), and the circles pertain to calculations based on 
(2.3) and (2.4). Figure 3 shows the distribution of c H for the same parameters and Re = i0 
with an allowance for the slippage effect, obtained from the numerical solution (solid 
curves) and the analytical solution (circles). 

The distribution of the relative thermal flux over the side surfaces of various solids 
for medium and large Re numbers is shown in Figs. 4-6, where the dashed curves represent 
the numerical solution of system (i.I) for Re = 102 , the solid curves pertain to the solu- 
tions for Re = 103 and 104 (they coincide), the white points refer to calculations based on 
(2.4) for Re = i02, and the black points pertain to the solution based on (2.6). Figures 
4 and 5 correspond to the flow around a parted hyperboloid, characterized by a half-angle 
of 40 ~ in the y = 0 plane and k = 0.5, and a triaxial ellipsoid, characterized by the 1:1.5: 
2 ratio between the axes. Figure 6 shows the behavior of q/q0 as a function of r = /x 2 + y2 
over the surface of an elliptic paraboloid with k = 0.4 for differential meridional sections: 
The curves 1-5 correspond to ~ = O, 45, 63.4, 76, 90 ~ (~ is the angle between the plane of 
the section in question and the y = 0 plane). 
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The above results indicate that for Re ~ i00, the dependence of the relative thermal 
flux over the side surface on the Re value virtually vanishes. The calculations performed 
for the elliptic paraboloid and the hyperboloid have also shown that the value of q/q0 var- 
ies by not more than 5-7% over the side surfaces of these solids with the following parame- 
ter variations: T w = 0.01-0.25 and y = 1.5-1.667. The fact that the relative thermal flux 
displays a weak dependence on y and T w was noted in the earlier investigations, performed 
within the framework of the boundary layer theory. 

Thus, our results indicate that, for Re Z i00, the distribution of the relative thermal 
flux over the surface depends slightly on the gas-dynamics flow parameters Re, y, Tw, and Pr 
and is basically determined by the geometric characteristics of the solid. It is described 
satisfactorily by expression (2.6). 

The authors are grateful to G. A. Tirskii for his interest in this paper. 
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